Abstract

Recent achievements in the design and fabrication of monolithic high power vertical cavity surface emitting lasers (VCSELs) are reviewed and major distinctions between the scaling properties of top and bottom emitting devices clarified. Although a few hundred milliwatts optical power can be extracted from a single bottom emitting laser, decreasing efficiencies with increasing device diameter suggest the investigation of 2D laser arrays. First experimental results are presented, featuring oxide confined VCSEL arrays at 980 nm wavelength with 3 X 3 elements and maximum output powers up to 650 mW, still delivering 270 mW with 25 percent conversion efficiency under continuous wave operation. With further optimizations of device size and array pitch, emitted power densities averaged over the entire chip area in excess of 1 kW/cm2 should be attainable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.