Abstract
High-NA extreme ultraviolet lithography (EUVL) is going to deliver the high-volume manufacturing (HVM) patterning for sub-7 nm nodes for the semiconductor industry. One of the critical challenges is to develop suitable EUV resists at high resolution with high sensitivity and low line-edge roughness (LER). The resist performance is generally limited by the resolution-LER-sensitivity (RLS) tradeoff and it is critical to find new resists that have a performance beyond this tradeoff. EUV interference lithography (EUV-IL) is a powerful and efficient technique that can print high resolution: half pitch (HP) down to 6 nm nanostructures. In this work, we evaluate the performance of the EUV resists, including molecular resist, inorganic resist, chemically-amplified (CAR) and metal sensitizer chemically-amplified resist (Metal-CAR). Six resists with the best performance have been compared in dose-to-size, line-edge roughness, exposure latitude for half pitch 16 nm and 14 nm. The molecular resist A showed lowest dose to resolve HP 16 nm (35 mJ/cm2) and 14 nm (41 mJ/cm2) but with high line edge roughness (LER 3.5 nm). CAR resist C provided lowest LER 1.9 and 1.8 nm for HP 16 nm and HP 14 nm, respectively, but with higher doses 74 mJ/cm2 (HP 16 nm) and 69 mJ/cm2 (HP 14 nm). The inorganic resist showed comprehensive good performance, giving low LER of 2.1 nm with 50 mJ/cm2 and 42 mJ/cm2 for HP 16 nm and HP 14 nm, respectively. Using the simplified Z-factor model, we showed that the LER of the resists was improved over the last two years. As the inorganic resist could resolve HP 11 nm with dose 67 mJ/cm2, we conclude it to be the current best candidate to partially resolve the RLS tradeoff problem and could be the potential EUV resist for semiconductor technological node printing.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.