Abstract

The second phase of the LHC, the High-Luminosity LHC, is scheduled to start in 2029, after a shutdown during which the beam intensity and focusing will be significantly upgraded. For this HL-LHC era, also the CMS detector will receive an extensive upgrade, primarily to maintain its physics performance at increasing pileup. The Phase-2 CMS Level-1 trigger rate will increase to 750 kHz, for an estimated data rate in excess of 50 Tbit/s. The Phase-2 CMS off-detector electronics will be based on the ATCA standard, with back-end boards receiving the detector data from the on-detector front-ends via custom, radiation-tolerant, optical links. The CMS Phase-2 data acquisition design tightens the integration between trigger control and data flow, extending the synchronous regime of the DAQ system. At the core of the design is the DAQ and Timing Hub, a custom ATCA hub card forming the bridge between the different, detector-specific, control and readout electronics and the common timing, trigger, and control systems. The overall synchronisation and data flow of the experiment is handled by the Trigger and Timing Control and Distribution System. For increased flexibility during commissioning and calibration runs, the design of the Phase-2 trigger and timing distribution system breaks with the traditional distribution tree, in favour of a configurable network connecting multiple independent control units to all off-detector endpoints. In order to reduce the number of custom hardware designs required, the DAQ hardware is designed such that it can also be used to implement the Trigger and Timing Control and Distribution System.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call