Abstract

Simple SummaryPhotodynamic therapy (PDT) has been undertaken with growing focus in recent studies to identify successful anticancer therapies. The field of PDT has evolved rapidly and is continuously being evaluated with new techniques. To make PDT more active and selective, molecular strategies are being developed. In the latest clinical studies on the use of PDT, some challenges are presented. Therefore, the use of nanotechnology-based approaches as delivery tools for PSs may improve their cancer cellular uptake and their toxic properties, as well as the PDT’s therapeutic impact. In addition, photoimmunotherapy (PIT) and photothermal therapy (PTT) might have a significant impact on solid tumor therapeutic strategies.Current research to find effective anticancer treatments is being performed on photodynamic therapy (PDT) with increasing attention. PDT is a very promising therapeutic way to combine a photosensitive drug with visible light to manage different intense malignancies. PDT has several benefits, including better safety and lower toxicity in the treatment of malignant tumors over traditional cancer therapy. This reasonably simple approach utilizes three integral elements: a photosensitizer (PS), a source of light, and oxygen. Upon light irradiation of a particular wavelength, the PS generates reactive oxygen species (ROS), beginning a cascade of cellular death transformations. The positive therapeutic impact of PDT may be limited because several factors of this therapy include low solubilities of PSs, restricting their effective administration, blood circulation, and poor tumor specificity. Therefore, utilizing nanocarrier systems that modulate PS pharmacokinetics (PK) and pharmacodynamics (PD) is a promising approach to bypassing these challenges. In the present paper, we review the latest clinical studies and preclinical in vivo studies on the use of PDT and progress made in the use of nanotherapeutics as delivery tools for PSs to improve their cancer cellular uptake and their toxic properties and, therefore, the therapeutic impact of PDT. We also discuss the effects that photoimmunotherapy (PIT) might have on solid tumor therapeutic strategies.

Highlights

  • The global rise in the incidence of cancer has led to an increase in the need for safe and effective treatment materials

  • NPs significantly reduced the survival of human cervical cancer cells (HeLa)

  • This review shows that NPs can provide solutions to address the critical limitations of the delivery of traditional PS medications, thereby improving the overall effectiveness of the treatment of photodynamic therapy (PDT) cancer

Read more

Summary

Introduction

The global rise in the incidence of cancer has led to an increase in the need for safe and effective treatment materials. Photodynamic therapy (PDT) is considered an alternative to radiation therapy and chemotherapy, which are the most common forms of cancer treatment. PDT is a procedure that has been proven to be extremely useful for the treatment of many forms of cancer and is considered to be a minimally invasive approach [2]. Such substances include chromophore molecules that transfer their energy as they are irradiated into cells with oxygen and contribute to the development of singlet or other reactive oxygen species (ROS), which may inflict substantial harm to the cells or blood tumors and stimulate the immune system’s anticancer activity [3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call