Abstract
The development of computer-generated synthetic environments, also calleddistributed virtual environments, for military simulation relies heavily upon computer-generated actors (CGAs) to provide accurate behaviors at reasonable cost so that the synthetic environments are useful, affordable, complex, and realistic. Unfortunately, the pace of synthetic environment development and the level of desired CGA performance continue to rise at a much faster rate than CGA capability improvements. This insatiable demand for realism in CGAs for synthetic environments arises from the growing understanding of the significant role that modeling and simulation can play in a variety of venues. These uses include training, analysis, procurement decisions, mission rehearsal, doctrine development, force-level and task-level training, information assurance, cyberwarfare, force structure analysis, sustainability analysis, life cycle costs analysis, material management, infrastructure analysis, and many others. In these and other uses of military synthetic environments, computer-generated actors play a central role because they have the potential to increase the realism of the environment while also reducing the cost of operating the environment. The progress made in addressing the technical challenges that must be overcome to realize effective and realistic CGAs for military simulation environments and the technical areas that should be the focus of future work are the subject of this series of papers, which survey the technologies and progress made in the construction and use of CGAs. In this, the first installment in the series of three papers, we introduce the topic of computer-generated actors and issues related to their performance and fidelity and other background information for this research area as related to military simulation. We also discuss CGA reasoning system techniques and architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.