Abstract

The detection of burnt areas from satellite imagery is one of the most straightforward and useful applications of satellite remote sensing. In general, the approach relies on a change detection analysis applied on pre- and post-event images. This change detection analysis usually is carried out by comparing the values of specific spectral indices such as: NBR (normalised burn ratio), BAI (burn area index), MIRBI (mid-infrared burn index). However, some potential sources of error arise, particularly when near-real-time automated approaches are adopted. An automated approach is mandatory when the burnt area monitoring should operate systematically on a given area of large size (country). Potential sources of errors include but are not limited to clouds on the pre- or post-event images, clouds or topographic shadows, agricultural practices, image pixel size, level of damage, etc. Some authors have already noted differences between global databases of burnt areas based on satellite images. Sources of errors could be related to the spatial resolution of the images used, the land-cover mask adopted to avoid false alarms, and the quality of the cloud and shadow masks. This paper aims to compare different burnt areas datasets (EFFIS, ESACCI, Copernicus, FIRMS, etc.) with the objective to analyse their differences. The comparison is restricted to the Italian territory. Furthermore, the paper aims to identify the degree of approximation of these satellite-based datasets by relying on ground survey data as ground truth. To do so, ground survey data provided by CUFA (Comando Unità Forestali, Ambientali e Agroalimentari Carabinieri) and CFVA (Corpo Forestale e Vigilanza Ambientale Sardegna) were used. The results confirm the existence of significant differences between the datasets. The subsequent comparison with the ground surveys, which was conducted while also taking into account their own approximations, allowed us to identify the accuracy of the satellite-based datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.