Abstract

Transactional Coherence and Consistency (TCC) offers a way to simplify parallel programming by executing all code within transactions. In TCC systems, transactions serve as the fundamental unit of parallel work, communication and coherence. As each transaction completes, it writes all of its newly produced state to shared memory atomically, while restarting other processors that have speculatively read stale data. With this mechanism, a TCC-based system automatically handles data synchronization correctly, without programmer intervention. To gain the benefits of TCC, programs must be decomposed into transactions. We describe two basic programming language constructs for decomposing programs into transactions, a loop conversion syntax and a general transaction-forking mechanism. With these constructs, writing correct parallel programs requires only small, incremental changes to correct sequential programs. The performance of these programs may then easily be optimized, based on feedback from real program execution, using a few simple techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.