Abstract

Modern mobile users commonly use multiple heterogeneous mobile devices, including smartphones, tablets, and wearables. Enabling these devices to seamlessly share their computational, network, and sensing resources has great potential benefit. Sharing resources across collocated mobile devices creates mobile device clouds (MDCs), commonly used to optimize application performance and to enable novel applications. However, enabling heterogeneous mobile devices to share their resources presents a number of difficulties, including the need to coordinate and steer the execution of devices with dissimilar network interfaces, application programming models, and system architectures. In this paper, we describe a solution that systematically empowers heterogeneous mobile devices to seamlessly, reliably, and efficiently share their resources. We present a programming model and runtime support for heterogeneous mobile device-to-device resource sharing. Our solution comprises a declarative domain-specific language for device-to-device cooperation, supported by a powerful runtime infrastructure. we evaluated our solution by conducting a controlled user study and running performance/energy efficiency benchmarks. The evaluation results indicate that our solution can become a practical tool for enhancing the capabilities of modern mobile applications by leveraging the resources of nearby mobile devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.