Abstract

Skeletal muscle plays a relevant role in metabolic flexibility and fuel usage and the associated muscle metabolic inflexibility due to high-fat diets contributing to obesity and type 2 diabetes. Previous research from our group indicates that a high-fat and rapid-digesting carbohydrate diet during pregnancy promotes an excessive adipogenesis and also increases the risk of non-alcoholic fatty liver disease in the offspring. This effect can be counteracted by diets containing carbohydrates with similar glycemic load but lower digestion rates. To address the role of the skeletal muscle in these experimental settings, pregnant rats were fed high-fat diets containing carbohydrates with similar glycemic load but different digestion rates, a high fat containing rapid-digesting carbohydrates diet (HF/RD diet) or a high fat containing slow-digesting carbohydrates diet (HF/SD diet). After weaning, male offspring were fed a standard diet for 3 weeks (weaning) or 10 weeks (adolescence) and the impact of the maternal HF/RD and HF/SD diets on the metabolism, signaling pathways and muscle transcriptome was analyzed. The HF/SD offspring displayed better muscle features compared with the HF/RD group, showing a higher muscle mass, myosin content and differentiation markers that translated into a greater grip strength. In the HF/SD group, metabolic changes such as a higher expression of fatty acids (FAT/CD36) and glucose (GLUT4) transporters, an enhanced glycogen content, as well as changes in regulatory enzymes such as muscle pyruvate kinase and pyruvate dehydrogenase kinase 4 were found, supporting an increased muscle metabolic flexibility and improved muscle performance. The analysis of signaling pathways was consistent with a better insulin sensitivity in the muscle of the HF/SD group. Furthermore, increased expression of genes involved in pathways leading to muscle differentiation, muscle mass regulation, extracellular matrix content and insulin sensitivity were detected in the HF/SD group when compared with HF/RD animals. In the HF/SD group, the upregulation of the ElaV1/HuR gene could be one of the main regulators in the positive effects of the diet in early programming on the offspring. The long-lasting programming effects of the HF/SD diet during pregnancy may depend on a coordinated gene regulation, modulation of signaling pathways and metabolic flexibility that lead to an improved muscle functionality. The dietary early programming associated to HF/SD diet has synergic and positive crosstalk effects in several tissues, mainly muscle, liver and adipose tissue, contributing to maintain the whole body homeostasis in the offspring.

Highlights

  • Metabolic adaptations to nutrients supply is a well-known process

  • We have shown [1] that the offspring of rats fed a high-fat diet containing slow-digesting carbohydrates (HF/SD) during pregnancy seemed to be protected against an increase in adipose tissue mass during adolescence

  • As we have previously published, maternal high-fat diets containing rapid-digesting carbohydrates (HF/RD) induced an increase in body weight in the adolescent offspring as compared with a similar group exposed to a gestational diet including slow-digesting carbohydrates (HF/SD)

Read more

Summary

Introduction

Metabolic adaptations to nutrients supply is a well-known process. Humans have the capability to promote fat storage from other nutrients such as carbohydrates. The fat, carbohydrate content and glycemic index of the diet are able to induce long-term adaptations that affect the homeostasis and metabolic flexibility of the body. While these diet-induced alterations are well-known in cases of diabetes or obesity in adulthood, less knowledge has been gathered regarding the influence of the diet during the perinatal period in the short- and long-term adaptations of the offspring. All of them translated into an increase in fat liver storage and, non-alcoholic fatty liver disease risk. These changes were corrected by feeding a HF/SD diet during pregnancy

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.