Abstract
New high-frequency, automated data collection and analysis algorithms could offer new insights into complex learning processes, especially for tasks in which students have opportunities to generate unique open-ended artifacts such as computer programs. These approaches should be particularly useful because the need for scalable project-based and student-centered learning is growing considerably. In this article, we present studies focused on how students learn computer programming, based on data drawn from 154,000 code snapshots of computer programs under development by approximately 370 students enrolled in an introductory undergraduate programming course. We use methods from machine learning to discover patterns in the data and try to predict final exam grades. We begin with a set of exploratory experiments that use fully automated techniques to investigate how much students change their programming behavior throughout all assignments in the course. The results show that students’ change in programming patterns is only weakly predictive of course performance. We subsequently hone in on 1 single assignment, trying to map students’ learning process and trajectories and automatically identify productive and unproductive (sink) states within these trajectories. Results show that our process-based metric has better predictive power for final exams than the midterm grades. We conclude with recommendations about the use of such methods for assessment, real-time feedback, and course improvement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.