Abstract
AbstractIncorporation of photolabile moieties into the polymer backbone holds promise to remotely‐control polymer degradation. However, suitable synthetic avenues are limited, especially for radical polymerizations. Here we report a strategy to program photodegradability into vinylic polymers by exploiting the wavelength selectivity of photocycloadditions for radical ring‐opening polymerization (rROP). Irradiation of coumarin terminated allylic sulfides with UVA light initiated intramolecular [2+2] photocycloaddition producing cyclic macromonomers. Subsequent RAFT‐mediated rROP with methyl acrylate yielded copolymers that inherited the photoreactivity of the cyclic parent monomer. Irradiation with UVB initiated efficient photocycloreversion of the coumarin dimers, causing polymer degradation within minutes under UVB light or days under sunlight exposure. Our synthetic strategy may pave the way to insert photolabile linkages into vinylic polymers, tuning degradation for specific wavelengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.