Abstract

The present study examined the effects of maternal social status, with subordinate status being a chronic stressor, on development and activity of the stress axis in zebrafish embryos and larvae. Female zebrafish were confined in pairs for 48 h to establish dominant/subordinate hierarchies; their offspring were reared to 144 h post-fertilization (hpf) and sampled at five time points over development. No differences were detected in maternal cortisol contribution, which is thought to be an important programmer of offspring phenotype. However, once zebrafish offspring began to synthesize cortisol de novo (48 hpf), larvae of dominant females exhibited significantly lower baseline cortisol levels than offspring of subordinate females. These lower cortisol levels may reflect reduced hypothalamic-pituitary-interrenal (HPI) axis activity, because corticotropin-releasing factor (crf) and cytochrome p450 side chain cleavage enzyme (p450scc) mRNA levels also were lower in larvae from dominant females. Moreover, baseline mRNA levels of HPI axis genes continued to be affected by maternal social status beyond 48 hpf. At 144 hpf, stress-induced cortisol levels were significantly lower in offspring of subordinate females. These results suggest programming of stress axis function in zebrafish offspring by maternal social status, emphasizing the importance of maternal environment and experience on offspring stress axis activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call