Abstract

Studies toward tailoring macroscopic extreme wetting behaviors on a certain well-defined surface in multiphase media are significant but still at an infant stage. Herein, superantiwetting evolutions in the oil-water-air system can be programmed from single to quadruple superrepellence by controlling the surface hydrophobic-hydrophilic heterogeneous chemistry. Ammonia vapor exposure makes the realization of challenging superhydrophilicity-superoleophobicity possible in air medium, causing the transition from quadruple to triple superantiwetting states in the oil-water-air system. Upon UV illumination, only single superrepellence-underwater superoleophobicity is maintained on titanium dioxide (TiO2, P25)-based coatings. A reversible transition between underoil superhydrophilicity and superhydrophobicity via an alternating UV irradiation and heating process leads to a switching between "water-absorbing" and "size-sieving" effects in water-in-oil emulsion separation. A comparative study for investigating two such effects in emulsion separation is further investigated. The current conceptual insights not only extend superwetting states to multiphase media, but can also deepen the understanding of the relationship between macroscopic extreme wetting behaviors and surface chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call