Abstract

We propose and demonstrate a simple method to accurately monitor and program arbitrary states of partial crystallization in phase-change materials (PCMs). The method relies both on the optical absorption in PCMs as well as on the physics of crystallization kinetics. Instead of raising temperature incrementally to increase the fraction of crystallized material, we leverage the time evolution of crystallization at constant temperatures and couple this to a real-time optical monitoring to precisely control the change of phase. We experimentally demonstrate this scheme by encoding a dozen of distinct states of crystallization in two different PCMs: GST and Sb2S3. We further exploit this ’time-crystallization’ for the in-situ analysis of phase change mechanisms and demonstrate that the physics of crystallization in Sb2S3 is fully described by the so-called Johnson-Mehl-Avrami-Kolmogorov formalism. The presented method not only paves the way towards real-time and model-free programming of non-volatile reconfigurable photonic integrated devices, but also provides crucial insights into the physics of crystallization in PCMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.