Abstract

DNA is a powerful tool that can be attached to nano- and micro-objects and direct the self-assembly through base pairing. Since the strategy of DNA programmable nanoparticle self-assembly was first introduced in 1996, it has remained challenging to use DNA to make powerful diagnostic tools and to make designed materials with novel properties and highly ordered crystal structures. In this review, we summarize recent experimental and theoretical developments of DNA-programmable self-assembly into three-dimensional (3D) materials. Various types of aggregates and 3D crystal structures obtained from an experimental DNA-driven assembly are introduced. Furthermore, theoretical calculations and simulations for DNA-mediated assembly systems are described and we highlight some typical theoretical models for Monte Carlo and Molecular Dynamics simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call