Abstract

Semiconductor heterostructures for solar energy conversion interface light-harvesting semiconductor nanoparticles with wide-band-gap semiconductors that serve as charge acceptors. In such heterostructures, the kinetics of charge separation depend on the thermodynamic driving force, which is dictated by energetic offsets across the interface. A recently developed promising platform interfaces semiconductor quantum dots (QDs) with ternary vanadium oxides that have characteristic midgap states situated between the valence and conduction bands. In this work, we have prepared CdS/β-Pb0.33V2O5 heterostructures by both linker-assisted assembly and surface precipitation and contrasted these materials with CdSe/β-Pb0.33V2O5 heterostructures prepared by the same methods. Increased valence-band (VB) edge onsets in X-ray photoelectron spectra for CdS/β-Pb0.33V2O5 heterostructures relative to CdSe/β-Pb0.33V2O5 heterostructures suggest a positive shift in the VB edge potential and, therefore, an increased driving force...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.