Abstract

DNA is a highly programmable biomolecule and has been used to construct biological circuits for different purposes. An important development of DNA circuits is to process the information on receptors on cell membranes. In this Communication, we introduce an architecture to program localized DNA-based biomolecular reaction networks on cancer cell membranes. Based on our architecture, various types of reaction networks have been experimentally demonstrated, from simple linear cascades to reaction networks of complex structures. These localized DNA-based reaction networks can be used for medical applications such as cancer cell detection. Compared to prior work on DNA circuits for evaluating cell membrane receptors, the DNA circuits made by our architecture have several major advantages including simpler design, lower leak, lower cost, and higher signal-to-background ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.