Abstract

We are witnessing an explosion in the amount of available data. Today, businesses and scientific institutions have the opportunity to analyze empirical data at unpreceded scale. For many companies, the analysis of their accumulated data is nowadays a key strategic aspect. Today’s analysis programs consist not only of traditional relational-style queries, but they use increasingly more complex data mining and machine learning algorithms to discover hidden patterns or build predictive models. However, with the increasing data volume and increasingly complex questions that people aim to answer, there is a need for new systems that scale to the data size and to the complexity of the queries. Relational Database Management Systems have been the work horses of large-scale data analytics for decades. Their key enabling feature was arguably the declarative query language that brought physical schema independence and automatic optimization of queries. However, their fixed data model and closed set of possible operations have rendered them unsuitable for many advanced analytical tasks. This observation made way for a new breed of systems with generic abstractions for data parallel programming, among which the arguably most famous one is MapReduce. While bringing large-scale analytics to new applications, these systems still lack the ability to express complex data mining and machine learning algorithms efficiently, or they specialize on very specific domains and give up applicability to a wide range of other problems. Compared to relational databases, MapReduce and the other parallel programming systems sacrifice the declarative query abstraction and require programmers to implement low-level imperative programs and to manually optimize them. This thesis discusses techniques that realize several of the key aspects enabling the success of relational databases in the new context of data-parallel programming systems. The techniques are instrumental in building a system for generic and expressive, yet concise, fluent, and declarative analytical programs. Specifically, we present three new methods: First, we provide a programming model that is generic and can deal with complex data models, but retains many declarative aspects of the relational algebra. Programs written against this abstraction can be automatically optimized with similar techniques as relational queries. Second, we present an abstraction for iterative data-parallel algorithms. It supports incremental (delta-based) computations and transparently handles state. We give techniques to make the optimizer iteration-aware and deal with aspects such as loop invariant data. The optimizer can produce execution plans that correspond to well-known hand-optimized versions of such programs. That way, the abstraction subsumes dedicated systems (such as Pregel) and offers competitive performance. Third, we present and discuss techniques to embed the programming abstraction into a functional language. The integration allows for the concise definition of programs and supports the creation of reusable components for libraries or domain-specific languages. We describe how to

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.