Abstract

Herein, with skillfully engaging stable T-Hg2+-T bonding, a "Crab Claw"-like DNA nanomachine with concise and highly efficient assembly and enhanced recognition/conversion efficiency was engineered as a super signal amplifier, which was united with Pd@Cu@Pt multimetallic mesoporous nanomaterials (Pd@Cu@Pt MMNs) for ultrasensitive electrochemical assay of mercury ions (Hg2+). Specifically, the formed "Crab Claw"-like DNA nanomachine could simultaneously trigger four same cascade DNAzyme cleavage reactions with the help of Mg2+ DNAzyme for markedly converting target Hg2+ to enormous DNA segments labeled with ferrocene (Fc), improving the detection sensitivity. Subsequently, the prepared Pd@Cu@Pt MMNs could not only show commendable electrochemical catalysis to Fc but also act as an excellent immobilization matrix for capturing and accumulating abundant Fc around them to further strengthen the electrochemical signal. As a result, the well-designed electrochemical sensor could achieve a low limit of detection of 3.58 fM in the range from 10 fM to 100 nM for Hg2+detection. This strategy offers a simple and rapid avenue to detect heavy metal ions and shows promising application potential for environmental pollutant monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call