Abstract

Despite recent progress, it remains challenging to program biomacromolecules to assemble into discrete nanostructures with pre-determined sizes and topologies. We report here a novel strategy to address this challenge. By using two orthogonal pairs of heterodimeric coiled coils as the building blocks, we constructed six discrete supramolecular assemblies, each composed of a prescribed number of coiled coil components. Within these assemblies, different coiled coils were connected via end-to-side covalent linkages strategically pre-installed between the non-complementary pairs. The overall topological features of two highly complex assemblies, a "barbell" and a "quadrilateral" form, were characterized experimentally and were in good agreement to the designs. This work expands the design paradigms for peptide-based discrete supramolecular assemblies and will provide a route for de novo fabrication of functional protein materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call