Abstract

Dielectric elastomer actuators (DEAs) are among the fastest and most energy-efficient, shape-morphing materials. To date, their shapes have been controlled using patterned electrodes or stiffening elements. While their actuated shapes can be analyzed for prescribed configurations of electrodes or stiffening elements (the forward problem), the design of DEAs that morph into target shapes (the inverse problem) has not been fully addressed. Here, we report a simple analytical solution for the inverse design and fabrication of programmable shape-morphing DEAs. To realize the target shape, two mechanisms are combined to locally control the actuation magnitude and direction by patterning the number of local active layers and stiff rings of varying shapes, respectively. Our combined design and fabrication strategy enables the creation of complex DEA architectures that shape-morph into simple target shapes, for instance, those with zero, positive, and negative Gaussian curvatures as well as complex shapes, such as a face.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.