Abstract
The application of numerous chemotherapeutic drugs has been limited due to poor solubility, adverse side effects, and even multidrug resistance in patients. Polymeric micelles with reversibly cross-linked structures provide a promising solution to these issues. Herein, we optimized and synthesized programable-released disulfide cross-linked micelle (PDCM) based on our previous well-defined dendrimers to deliver the antitumor drug betulinic acid (BA) and paclitaxel (PDCM@PTX) and evaluated the therapeutic efficacy of multidrug-resistant (MDR) simulative orthotopic intraperitoneal ovarian cancer mice models. Comprehensive results demonstrated that PDCM@PTX formed stable nanoparticles able to improve the pharmacokinetic profile and circulation time of PTX, allowing for increased tumor penetration. Furthermore, in the tumor microenvironment, the programable-switches (ester bonds and disulfide cross-linking) of PDCM@PTX were cleaved by the high concentration of glutathione (tumor microenvironment) and esterase (intracellular) present in the tumor, allowing for in situ release of PTX and BA, resulting in intensive therapeutic efficacy in MDR ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.