Abstract
To determine whether apoptotic and necrotic myocyte cell death occur acutely and chronically after infarction, the formation of DNA strand breaks and the localization of myosin monoclonal antibody labeling were analyzed in the surviving myocardium from 20 min to 1 month. DNA strand breaks in myocyte nuclei were detected as early as 3 h following coronary artery occlusion and were still present at 1 month. This cellular process was characterized biochemically by internucleosomal DNA fragmentation which produced DNA laddering on agarose gel electrophoresis. Quantitatively, 155 myocyte nuclei per 106cells exhibited DNA strand breaks in the portion adjacent to the infarcted tissue at 3–12 h. This parameter increased to 704 at 1–2 days and subsequently decreased to 364 at 7 days, 188 at 14 days, and 204 at 1 month. In the remote myocardium, the number of myocyte nuclei with DNA strand breaks was 84 per 106at 3–12 h and remained essentially constant up to 1 month. Programmed myocyte cell death was accompanied by a decrease in the expression of bcl-2 and an increase in the expression of bax. The changes in the expression of these genes were present at 1 and 7 days after coronary artery occlusion. In conclusion, the mechanical load produced by myocardial infarction and ventricular failure may affect the regulation of bcl-2 and bax in the viable myocytes, triggering programmed cell death and the remodeling of the ventricular wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.