Abstract

The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of interferon genes (STING) signalling pathway has been a promising target for anticancer immunity, but rationally activating and enhancing this pathway in tumour cells is critical. Herein, a glutathione sensitive ZnFe2O4-based nanosystem is developed to programmatically initiate and enhance the STING signalling pathway in tumour cells. The prepared ZnFe2O4 nanoparticles were coated with cancer cell membrane (CCM), which enabled the nanosystem target tumour cells. In tumour cells, ZnFe2O4 nanoparticles could be disintegrated by responding to high level glutathione, and the released Fe3+ generated reactive oxygen species to induce the DNA leakage into the cytoplasm to stimulate cGAS. Then Zn2+ promoted cGAS-DNA phase separation to intensify the cGAS enzymatic activity. In addition, the low dose encapsulation of paclitaxel (PTX) acting as an antimitotic agent (ZnFe2O4-PTX@CCM) ensured the sustained activation of cGAS/STING pathway. The in vitro and in vivo results confirmed that ZnFe2O4-PTX@CCM elevated the cGAS/STING activity, promoted dendritic cell maturation, increased cytotoxic T lymphocyte and natural killer cells infiltration, eventually inhibiting the tumour progress and postoperative recurrence. This study provided feasible references on constructing STING activation nanosystem for tumour immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.