Abstract

A solution-printing technique that enables the patterning and aligning of organic semiconducting crystals is necessary for their practical application. Here, we report the facile growth of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) semiconducting crystal patterns via a novel blade-coating technique. Defining low/high shearing-speed regions alternatively in a programmed manner enables the growth of TIPS-PEN crystals in low-speed regions and their patterning in high-speed regions. Various crystal-analysis tools, including polarized UV-vis absorption spectroscopy, grazing-incidence wide-angle X-ray scattering, and near-edge X-ray absorption fine structure, reveal that a crystal grown at an optimum shearing speed is highly oriented along the shearing direction with high crystallinity, and its molecules have a more edge-on orientation for efficient lateral-charge transport. As a result, organic field-effect transistors comprised of these crystals show a high field-effect mobility of up to 1.74 cm2/(V s). In addition, various crystal patterns can be created by simply changing the programming parameters, suggesting the broad utility of the crystal patterns and printing technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call