Abstract

The design and assembly of DNA multilayer films with programmable degradation properties are reported. The nanostructured DNA films are assembled through the layer-by-layer (LbL) assembly technique and can be programmed to degrade by subsequently introducing DNA strands of specific sequences. The strands preferentially hybridize to the building blocks that stabilize the film structure, causing the film to rearrange and degrade. The rate of degradation is influenced by both the availability and accessibility of the complementary DNA binding sites within the film, as well as the degree of crosslinking within the film. Similar results are obtained for DNA multilayer films assembled on planar and particle supports. This approach offers an avenue to tailor degradability features into DNA-based materials that may find application in the biosciences, in areas such as biosensing and drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call