Abstract

Mechano-bactericidal surfaces deliver lethal effects to contacting bacteria. Until now, cell death has been attributed to the mechanical stress imparted to the bacterial cell envelope by the surface nanostructures; however, the process of bacterial death encountering nanostructured surfaces has not been fully illuminated. Here, we perform an in-depth investigation of the mechano-bactericidal action of black silicon (bSi) surfaces toward Gram-negative bacteria Pseudomonas aeruginosa. We discover that the mechanical injury is not sufficient to kill the bacteria immediately due to the survival of the inner plasma membrane. Instead, such sublethal mechanical injury leads to apoptosis-like death (ALD) in affected bacteria. In addition, when the mechanical stress is removed, the self-accumulated reactive oxygen species (ROS) incur poststress ALD in damaged cells in a nonstressed environment, revealing that the mechano-bactericidal actions have sustained physiological effects on the bacterium. This work creates a new facet and can introduce many new regulation tools to this field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.