Abstract

The unusual perforations in the leaf blades of Monstera obliqua (Araceae) arise through programmed cell death early in leaf development. At each perforation site, a discrete subpopulation of cells undergoes programmed cell death simultaneously, while neighboring protoderm and ground meristem cells are unaffected. Nuclei of cells within the perforation site become terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive, indicating that DNA cleavage is an early event. Gel electrophoresis indicates that DNA cleavage is random and does not result in bands that represent multiples of internucleosomal units. Ultrastructural analysis of cells at the same stage reveals misshapen, densely stained nuclei with condensed chromatin, disrupted vacuoles, and condensed cytoplasm. Cell walls within the perforation site remain intact, although a small disk of dying tissue becomes detached from neighboring healthy tissues as the leaf expands and stretches the minute perforation. Exposed ground meristem cells at the rim of the perforation differentiate as epidermal cells. The cell biology of perforation formation in Monstera resembles that in the aquatic plant Aponogeton madagascariensis (Aponogetonaceae; Gunawardena et al. 2004), but the absence of cell wall degradation and the simultaneous execution of programmed cell death throughout the perforation site reflect the convergent evolution of this distinct mode of leaf morphogenesis in these distantly related plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.