Abstract

Generalized synthetic strategies for nanostructures with well-defined physical dimensions and broad-range chemical compositions are at the frontier of advanced nanomaterials design, functionalization, and application. Here, we report a composition-programmable synthesis of multimetallic phosphide CoMPx nanorods (NRs) wherein M can be controlled to be Fe, Ni, Mn, Cu, and their binary combinations. Forming Co2P/MPx core/shell NRs and subsequently converting them into CoMPx solid-solution NRs through thermal post-treatment are essential to overcome the obstacle of morphology/structure inconsistency faced in conventional synthesis of CoMPx with the different M compositions. The resultant CoMPx with uniform one-dimensional (1-D) structure provides us a platform to unambiguously screen the M synergistic effects in improving the electrocatalytic activity, as exemplified by the oxygen evolution reaction. This new approach mediated by core/shell nanostructure formation and conversion can be extended to other multicomponent nanocrystal systems (metal alloy, mixed oxide, and chalcogenide, etc.) for diverse applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call