Abstract
The condition for strong ellipticity of the equilibrium equations plays a significant role in the theory of elasticity. For isotropic elastic materials and anisotropic linearly elastic materials, identification of the strong ellipticity conditions for the corresponding equilibrium equations has been discussed in many references and obtained some equivalent checkable criteria. But for general nonlinearly elastic materials, it is hardly possible to give checkable equivalent criteria for the strong ellipticity condition of the associated equilibrium equations. In 2009, Qi et al. pointed that the strong ellipticity condition of the equilibrium equations can be equivalently transformed into the strong ellipticity condition of partially symmetric tensors. In this paper, using the M-eigenvalues of partially symmetric tensors, we give some easily computable and verifiable sufficient conditions for the strong ellipticity of partially symmetric tensors. Based on these criteria, some direct algorithms for identifying the strong ellipticity condition of partially symmetric tensors are derived. Numerical examples show that the proposed criteria are efficient in identifying the strong ellipticity condition of the equilibrium equations, especially for general nonlinearly elastic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.