Abstract

In quantum information and quantum computing, the carrier of information is some quantum system and information is encoded in its state. After processing the state in the quantum processor, the information has to be read out. Clearly, this task is equivalent to determining the final state of the system. We begin by briefly reviewing various possible state discrimination strategies that are optimal with respect to some reasonable criteria and report on recent advances in the unambiguous discrimination of mixed quantum states. This strategy has been successfully applied to devise a class of novel probabilistic quantum algorithms and has been demonstrated experimentally, using a linear optical implementation via generalized interferometers. In the second part we present a scheme for communication via completely unknown quantum states. In this context we discuss programmable quantum state discriminators that are universal, i.e. perform optimally on average, independently of the actual states used for the communication scheme. We conclude with a discussion of possible experimental implementations of the proposed device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call