Abstract

Design of acoustic materials can be achieved through the connection between their geometry and acoustical performance. Here, we propose 3D-printing as an enabling technology that allows us to precisely control an acoustic material's micro-geometry and orientation, which then eliminates microscopic geometry bias due to conventional manufacturing process, thus realizing precise material characterization at the 3D-printing CAD programming stage. This concept was practiced in the current study focusing on 3D-printing fibrous sound absorbing layers. A fused deposition modeling (FDM) method was applied to produce the fibers. A Tarnow-based airflow resistivity model was implemented together with Johnson-Champoux-Allard and Biot theories for modeling the geometry-performance connection for the fibers. The sound absorption prediction accuracy of the model was validated by E-1050 standing wave tube measurements on the printed sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call