Abstract
Smart wet-spun fibers for highly programmable release of therapeutic drug have been rarely reported. Herein, thermalresponsive composite fibers were successfully prepared by core-sheath wet-spinning technology in present study. They consisted of a model drug of natural antibacterial berberine chloride hydrate (BCH) and a drug carrier of temperature responsive shape memory polyurethane (SMPU). The obtained composite fibers featured with well-controlled microscopic morphologies, exhibiting significantly enhanced thermal stability and superb mechanical properties. In vitro drug release test and corresponding release kinetics study were performed for investigation of BCH's release behavior. Results demonstrated that the release behaviors of BCH from the core-sheath fibers were pH-dependent, influenced by both diffusion from pore channels and the solubility of BCH in the release mediums, and BCH imbedded only in core part showed a longer release period compared with that in both core and sheath parts of the composite fibers. More importantly, the release rate of BCH can be simply controlled by changing the initial shapes of fibers through stretching and fixation of the stretched deformations. Furthermore, the antibacterial durability of the smart composites fibers was demonstrated and tracked according to the growth inhibition against both negative E. coli and positive S. aureus bacteria strains. All these results suggest that the developed composite fibers can be promising candidates as smart drug delivery vehicles for highly adjustable doses of target drugs towards practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.