Abstract

Reduction of inflammation and thrombosis caused by implanted devices is critical for clinical success. To this end, the strategy based on programmable release of anti-inflammatory and anti-thrombotic agents from the widely-used polycaprolactone (PCL)/gelatin nanofiber scaffold is developed. The release of 2-O-d-Glucopyranosyl-l-ascorbic Acid (AA-2G) and heparin are controlled by reactive oxygen species (ROS)-responsive poly(ethylene glycol)-based β-thioether ester copolymer (PEGDA-EDT) and mesoporous silica nanoparticles (MSN) in the nanofiber, respectively. The in vitro assay demonstrate that the scaffolds are hemocompatible with the resistance of platelet adhesion; the control release of AA-2G prevents initial inflammation and oxidation of the blood cells, and the subsequent release of heparin entitles nanofibers with long-term anti-thrombotic capability. In addition, rapid endothelialization is obtained on the surface of nanofiber scaffolds for the further enhancement of the hemocompatibility. In vivo implant evaluation convinces that the nanofiber scaffolds possess high biocompatibility with the substantial resistance for inflammation and thrombosis. Hence, our work paves a new way to develop the anti-inflammatory and anti-thrombotic tissue-engineering substrates through programmable delivery of two or multiple drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call