Abstract
Quasi-zero-stiffness (QZS) metamaterials have attracted significant interest for application in low-frequency vibration isolation. However, previous work has been limited by the design mechanism of QZS metamaterials, as it is still difficult to achieve a simplified structure suitable for practical engineering applications. Here, we introduce a class of programmable QZS metamaterials and a novel design mechanism that address this long-standing difficulty. The proposed QZS metamaterials are formed by an array of representative unit cells (RUCs) with the expected QZS features, where the QZS features of the RUC are tailored by means of a structural bionic mechanism. In our experiments, we validate the QZS features exhibited by the RUCs, the programmable QZS behavior, and the potential promising applications of these programmable QZS metamaterials in low-frequency vibration isolation. The obtained results could inspire a new class of programmable QZS metamaterials for low-frequency vibration isolation in current and future mechanical and other engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.