Abstract
A novel negative differential resistance (NDR) phenomenon is reported herein based on planar plasmonic tunnel junction, resulting from plasmon-assisted long-range electron tunneling (P-tunneling) and electronic caching effect of Au@SiO2 nanoparticles. The tunnel junction is made of shell-insulated Au@SiO2 nanoparticle nanomembrane, in which SiO2 shells act as a tunable tunneling barrier, while the Au core not only support the plasmonic effect to enable P-tunneling, but also act as electronic caches to render NDR responses. The NDR peak voltage and current can be programmably controlled by varying the thickness of SiO2 shell and the size of Au core to tune barrier level for electron transport. In addition, light induced plasmonic effect can be further managed to regulate the NDR behavior by fine-tuning P-tunneling. The phenomenon is exploited for robust use as memristors. The work provides a new mechanism for the generation of NDR effect and may open a way for the development of robust and new conceptual nanoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.