Abstract

The characteristics of DNA hybridization enable molecular computing through strand displacement reactions, facilitating the construction of complex DNA circuits, which is an important way to realize information interaction and processing at a molecular level. However, signal attenuation in the cascade and shunt process hinders the reliability of the calculation results and further expansion of the DNA circuit scale. Here, we demonstrate a novel programmable exonuclease-assisted signal transmission architecture, where DNA strand with toehold employed to inhibit the hydrolysis process of EXO λ is applied in DNA circuits. We construct a series circuit with variable resistance and a parallel circuit with constant current source, ensuring excellent orthogonal properties between input and output sequences while maintaining low leakage (<5%) during the reaction. Additionally, a simple and flexible exonuclease-driven reactant regeneration (EDRR) strategy is proposed and applied to construct parallel circuits with constant voltage sources that could amplify the output signal without extra DNA fuel strands or energy. Furthermore, we demonstrate the effectiveness of the EDRR strategy in reducing signal attenuation during cascade and shunt processes by constructing a four-node DNA circuit. These findings offer a new approach to enhance the reliability of molecular computing systems and expand the scale of DNA circuits in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.