Abstract

Simultaneous detection of multiple miRNAs of one disease can greatly reduce misdiagnosis and improve the detection rate, which is helpful for early cancer diagnosis. Here, a programmable microparticle-array-based acoustic microchip for in situ simultaneous multiple miRNAs detection is developed. On this microchip, the multiple probes-labeled microparticle array can be procedurally arranged in a microfluidic reaction chamber when four orthogonally piezoelectric transducers are applied. The probes-labeled microparticle array offers a platform for full molecular contact under dynamic ultrasonic streaming, and the array supplies a multipoint data correction to reduce the false positive of the detection results for more precisely visible fluorescence multiple target miRNAs sensing. We employed miRNA-21, miRNA-210, and miRNA-155 as specific biomarkers of pancreatic cancer and successfully finished the multiple miRNAs simultaneous detection in the microchip with a detection limit of 139.1, 179.9, and 111.4 pM, respectively. Such a device is programmable by adjusting the imputing frequency and voltage, and target biomarkers can be easily collected when the ultrasound force is released for further analysis, which shows great potential in multiple miRNAs enrichment and simultaneous detection for cancer clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call