Abstract

The arrangement of mesogenic units determines mechanical response of the liquid crystal polymer network (LCN) film to heat. Here, we show an interesting approach to programming three-dimensional patterns of the LCN films with periodic topological defects generated by applying an electric field. The mechanical properties of three representative patterned LCN films were investigated in terms of the arrangement of mesogenic units through tensile testing. Remarkably, it was determined that LCN films showed enhanced toughness and ductility as defects increased in a given area, which is related to the elastic modulus mismatch that mitigates crack propagation. Our platform can also be used to modulate the frictional force of the patterned LCN films by varying the temperature, which can provide insight into the multiplex mechanical properties of LCN films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.