Abstract
AbstractJanus films with controlled pore structures can be particularly important in diverse applications. There remains a challenge for simple, rapid, and scalable fabrication methods to control Janus balance (JB) including the thickness of the individual face as well as porosity and pore size. Here the electrofabrication of a porous Janus film with controlled Janus balance from aminopolysaccharide chitosan under the salt effect is reported. Sequential deposition of chitosan under programmable salt environment and electrochemical conditions enables construction of Janus films with precisely controlled Janus balance. Bioactive partially soluble calcium phosphate (CaP) salts can also generate porous structure in Janus film. It is specifically reported that a chitosan/hydroxyl apatite (HAp) composite Janus film can serve as an effective scaffold for guided bone regeneration. The dense layer functions to provide mechanical support and serves as a barrier for fibrous connective tissue penetration. The porous composite layer functions to provide the microenvironment for osteogenesis. In vivo studies using a rat calvarial defect model confirm the beneficial features of this Janus composite for guided bone regeneration. These results suggest the potential of electrofabrication as a simple and scalable platform technology to tune the self‐organization of soft matter for a range of emerging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.