Abstract

Quantum-dot fabrication and characterization is a well-established technology, which is used in photonics, quantum optics, and nanoelectronics. Four quantum-dots placed at the corners of a square form a unit cell, which can hold a bit of information and serve as a basis for quantum-dot cellular automata (QCA) nanoelectronic circuits. Although several basic QCA circuits have been designed, fabricated, and tested, proving that quantum-dots can form functional, fast and low-power nanoelectronic circuits, QCA nanoelectronics still remain at its infancy. One of the reasons for this is the lack of design automation tools, which will facilitate the systematic design of large QCA circuits that contemporary applications demand. Here we present novel, programmable QCA circuits, which are based on crossbar architecture. These circuits can be programmed to implement any Boolean function in analogy to CMOS field-programmable gate arrays and open the road that will lead to full design automation of QCA nanoelectronic circuits. Using this architecture we designed and simulated QCA circuits that proved to be area efficient, stable, and reliable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call