Abstract

Soft pneumatic actuation is widely used in wearable devices, soft robots, artificial muscles, and surgery machines. However, generating high-pressure gases in a soft, controllable, and portable way remains a substantial challenge. Here, a class of programmable chemical reactions that can be used to controllably generate gases with a maximum pressure output of nearly 6MPa is reported. It is proposed to realize the programmability of the chemical reaction process using thermoelectric material with programmable electric current and employing preprogrammed reversible chemical reactants. The programmable chemical reactions as soft pneumatic actuation can be operated independently as miniature gas sources (∼20-100g) or combined with arbitrary physical structures to make self-contained machines, capable of generating unprecedented pressures of nearly 6MPa or forces of about 18kN in a controllable, portable, and silent manner. Striking demonstrations of breaking a brick, a marble, and concrete blocks, raising a sightseeing car, and successful applications in artificial muscles and soft assistive wearables illustrate tremendous application prospects of soft pneumatic actuation via programmable chemical reactions. The study establishes a new paradigm toward ultrastrong soft pneumatic actuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call