Abstract

Birefringence has been attracting broad attention due to its strong potential for applications in biomedicine and optics, such as biomedical diagnosis, colorimetric sensing, retardant, and polarization encoding. However, engineering architectures with precisely controllable birefringence remains a challenge due to the lack of effective modulation of the localized orientation. Here, by taking advantage of the inherently one-dimensional (1D) anisotropic structure of cellulose nanocrystals (CNCs), we demonstrate an approach to tune the alignment of CNCs with a well-controllable orientation at localized preciseness, which is in contrast to the previously reported unidirectional/radical orientation of CNC-based birefringent structures. The localized modulation of CNC orientation is facilitated by directing the 1D nanocrystals to align along the template periphery and the migrated three-phase contact line during the evaporation. The resultant CNC films exhibit birefringent extinction patterns under polarized light, in which versatile pattern designs can be obtained by employing templates with different shapes and template arrays with varied layouts. Due to the locally modulated orientation of CNCs, the films indicate "kaleidoscope-like" dynamically transformable designs of the birefringent patterns depending on the polarized angle, which has barely been observed previously. Furthermore, an N-nary encoding system for abundant information storage is demonstrated based on the sunlight-transparent CNC films, but with visible extinction patterns under polarized light, which is promising for encryptions, anticounterfeiting, and imaging, enriching the attractive research area of bio-based photonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call