Abstract
Deterministic assembly of metallic nanoparticles (e.g. gold nanoparticles) into prescribed configurations has promising applications in many fields such as biosensing and drug delivery. DNA-directed bottom-up assembly has demonstrated unparalleled capability to precisely organize metallic nanoparticles into assemblies of designer configurations. However, the fabrication of assemblies comprising delicate nanoparticle arrangements, especially across large dimensions (e.g. micron size), has remained challenging. In this report, we have designed DNA origami hexagon tiles that are capable of assembling into higher-order networks of honeycomb arrays or tubes with dimensions up to several microns. The versatile addressability of the unit tile enables precise and periodic positioning of nanoparticles onto these higher-order DNA origami frame structures. Overall, we have constructed a series of 9 gold nanoparticle architectures with programmable configurations ranging from nanometer-sized clusters to micrometer-sized lattices. We believe these architectures shall hold great application potential in numerous biomedical fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.