Abstract
Cell aggregation is a complex behavior that is closely related to the viability, differentiation, and migration of cells. An effort to create synthetic analogs could lead to considerable advances in cell physiology and biophysics. Rendering and modulating such a dynamic artificial cell system require mechanisms for receiving, transducing, and transmitting intercellular signals, yet effective tools are limited at present. Here we construct synthetic cells from engineered lipids and show their programmable aggregation behaviors using DNA oligonucleotides as signaling molecules. The artificial cells have transmembrane channels made of DNA origami that are used to recognize and process intercellular signals. We demonstrate that multiple small vesicles aggregate onto a giant vesicle after a transduction of external DNA signals by an intracellular enzyme and that the small vesicles dissociate when receiving "release" signals. This work provides new possibilities for building synthetic protocells capable of chemical communication and coordination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.