Abstract

Communication-dependent and software-based distributed energy resources (DERs) are extensively integrated into modern microgrids, providing extensive benefits such as increased distributed controllability, scalability, and observability. However, malicious cyber-attackers can exploit various potential vulnerabilities. In this study, a programmable adaptive security scanning (PASS) approach is presented to protect DER inverters against various power-bot attacks. Specifically, three different types of attacks, namely controller manipulation, replay, and injection attacks, are considered. This approach employs both software-defined networking technique and a novel coordinated detection method capable of enabling programmable and scalable networked microgrids (NMs) in an ultra-resilient, time-saving, and autonomous manner. The coordinated detection method efficiently identifies the location and type of power-bot attacks without disrupting normal NM operations. Extensive simulation results validate the efficacy and practicality of the PASS for securing NMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call