Abstract
ABSTRACTChanges of several orders of magnitude in the low field conductivity of hydrogenated amorphous silicon alloy metal-semiconductor-metal MSM devices can be obtained by current stressing. This feature is suitable for memory applications, since the device can be programmed from an unstressed state to a stressed state with a ratio greater than 104. The change in conductivity is attributed to the creation of a large concentration of silicon dangling bond states during current stressing which form a defect band with a low activation energy for current transport. In this paper, we consider the use of current induced conductivity in hydrogenated amorphous silicon nitride (a-SiNx:H) multi-layer structures and show that, in principle, highly complex three dimensional circuits could be made. In particular, the potential of this approach is illustrated by using a simple MSMSM device with two silicon rich silicon nitride layers. An array with lxi0 elements has been fabricated and programmed to store 28 bits of binary information with three outputs per input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.