Abstract

Este artigo trata do problema de programação de tarefas flow shop permutacional. Diversos métodos heurísticos têm sido propostos para tal problema, sendo que um dos tipos de método consiste em melhorar soluções iniciais a partir de procedimentos de busca no espaço de soluções, tais como Algoritmo Genético (AG) e Simulated Annealing (SA). Uma idéia interessante que tem despertado gradativa atenção refere-se ao desenvolvimento de métodos heurísticos híbridos utilizando Algoritmo Genético e Simulated Annealing. Assim, o objetivo é combinar as técnicas de tal forma que o procedimento resultante seja mais eficaz do que qualquer um dos seus componentes isoladamente. Neste artigo é apresentado um método heurístico híbrido Algoritmo Genético-Simulated Annealing para minimizar a duração total da programação flow shop permutacional. Com o propósito de avaliar a eficácia da hibridização, o método híbrido é comparado com métodos puros AG e SA. Os resultados obtidos a partir de uma experimentação computacional são apresentados.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.