Abstract

Abstract With ever growing data sets spanning DNA sequencing all the way to single-cell transcriptomics, we are now facing the question of how can we turn this vast amount of information into knowledge. How do we integrate these large data sets into a coherent whole to help understand biological programs? The last few years have seen a growing interest in machine learning methods to analyse patterns in high-throughput data sets and an increasing interest in using program synthesis techniques to reconstruct and analyse executable models of gene regulatory networks. In this review, we discuss the synergies between the two methods and share our views on how they can be combined to reconstruct executable mechanistic programs directly from large-scale genomic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.