Abstract

We define a program size complexity function $H^\infty$ as a variant of the prefix-free Kolmogorov complexity, based on Turing monotone machines performing possibly unending computations. We consider definitions of randomness and triviality for sequences in ${\{0,1\}}^\omega$ relative to the $H^\infty$ complexity. We prove that the classes of Martin-Lof random sequences and $H^\infty$-random sequences coincide and that the $H^\infty$-trivial sequences are exactly the recursive ones. We also study some properties of $H^\infty$ and compare it with other complexity functions. In particular, $H^\infty$ is different from $H^A$, the prefix-free complexity of monotone machines with oracle A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call